Strongly fillable contact 3–manifolds without Stein fillings

نویسنده

  • Paolo Ghiggini
چکیده

We use the Ozsváth–Szabó contact invariant to produce examples of strongly symplectically fillable contact 3–manifolds which are not Stein fillable. AMS Classification numbers Primary: 57R17 Secondary: 57R57

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Stein fillings of contact manifolds

We construct infinitely many distinct simply connected Stein fillings of a certain infinite family of contact 3-manifolds. Math. Res. Lett. 15 (2008), no. 6, 1127–1132 c © International Press 2008 A NOTE ON STEIN FILLINGS OF CONTACT MANIFOLDS Anar Akhmedov, John B. Etnyre, Thomas E. Mark, and Ivan Smith Abstract. In this note we construct infinitely many distinct simply connected Stein fillings...

متن کامل

On symplectic fillings

In this note we make several observations concerning symplectic fillings. In particular we show that a (strongly or weakly) semi-fillable contact structure is fillable and any filling embeds as a symplectic domain in a closed symplectic manifold. We also relate properties of the open book decomposition of a contact manifold to its possible fillings. These results are also useful in showing the ...

متن کامل

Strongly Fillable Contact Manifolds and J–holomorphic Foliations

We prove that every strong symplectic filling of a planar contact manifold admits a Lefschetz fibration over a disk that restricts to any given planar open book at the boundary. It follows that strongly fillable planar contact structures are also Stein fillable. Using similar methods, involving foliations by J–holomorphic curves, we construct a Lefschetz fibration over the annulus for any stron...

متن کامل

Singularity Links with Exotic Stein Fillings

In [4], it was shown that there exist infinitely many contact Seifert fibered 3-manifolds each of which admits infinitely many exotic (homeomorphic but pairwise non-diffeomorphic) simply-connected Stein fillings. Here we extend this result to a larger set of contact Seifert fibered 3-manifolds with many singular fibers and observe that these 3-manifolds are singularity links. In addition, we pr...

متن کامل

Symplectic fillability of toric contact manifolds

According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and most of them are strongly symplectically fillable. The proof is based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005